Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
2.
Cells ; 13(2)2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38247808

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune inflammatory demyelinating disease of the central nervous system (CNS), which is triggered by an autoimmune assault targeting oligodendrocytes and myelin. Recent research indicates that the demise of oligodendrocytes due to an autoimmune attack contributes significantly to the pathogenesis of MS and its animal model experimental autoimmune encephalomyelitis (EAE). A key challenge in MS research lies in comprehending the mechanisms governing oligodendrocyte viability and devising therapeutic approaches to enhance oligodendrocyte survival. Here, we provide an overview of recent findings that highlight the contributions of oligodendrocyte death to the development of MS and EAE and summarize the current literature on the mechanisms governing oligodendrocyte viability in these diseases.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Oligodendroglia , Bainha de Mielina , Sistema Nervoso Central
3.
Int J Biol Macromol ; 253(Pt 3): 126819, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709236

RESUMO

The escalating global prevalence of antimicrobial resistance poses a critical threat, prompting concerns about its impact on public health. This predicament is exacerbated by the acute shortage of novel antimicrobial agents, a scarcity attributed to the rapid surge in bacterial resistance. This review delves into the realm of antimicrobial peptides, a diverse class of compounds ubiquitously present in plants and animals across various natural organisms. Renowned for their intrinsic antibacterial activity, these peptides provide a promising avenue to tackle the intricate challenge of bacterial resistance. However, the clinical utility of peptide-based drugs is hindered by limited bioavailability and susceptibility to rapid degradation, constraining efforts to enhance the efficacy of bacterial infection treatments. The emergence of nanocarriers marks a transformative approach poised to revolutionize peptide delivery strategies. This review elucidates a promising framework involving nanocarriers within the realm of antimicrobial peptides. This paradigm enables meticulous and controlled peptide release at infection sites by detecting dynamic shifts in microenvironmental factors, including pH, ROS, GSH, and reactive enzymes. Furthermore, a glimpse into the future reveals the potential of targeted delivery mechanisms, harnessing inflammatory responses and intricate signaling pathways, including adenosine triphosphate, macrophage receptors, and pathogenic nucleic acid entities. This approach holds promise in fortifying immunity, thereby amplifying the potency of peptide-based treatments. In summary, this review spotlights peptide nanosystems as prospective solutions for combating bacterial infections. By bridging antimicrobial peptides with advanced nanomedicine, a new therapeutic era emerges, poised to confront the formidable challenge of antimicrobial resistance head-on.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Animais , Peptídeos Antimicrobianos , Estudos Prospectivos , Bactérias , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Peptídeos/uso terapêutico
4.
J Mater Chem B ; 11(33): 7804-7833, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37539650

RESUMO

Bacteria that have worked with humans for thousands of years pose a major threat to human health even today, as drug resistance has become a prominent problem. Compared to conventional drug therapy, nucleic acid-based therapies are a promising and potential therapeutic strategy for diseases in which nucleic acids are delivered through a nucleic acid delivery system to regulate gene expression in specific cells, offering the possibility of curing intractable diseases that are difficult to treat at this stage. Among the many nucleic acid therapeutic ideas, microRNA, a class of small nucleic acids with special properties, has made great strides in biology and medicine in just over two decades, showing promise in preclinical drug development. In this review, we introduce recent advances in nucleic acid delivery systems and their clinical applications, highlighting the potential of nucleic acid therapies, especially miRNAs extracted from traditional herbs, in combination with the existing set of nucleic acid therapeutic systems, to potentially open up a new line of thought in the treatment of cancer, viruses, and especially bacterial infectious diseases.


Assuntos
Infecções Bacterianas , MicroRNAs , Ácidos Nucleicos , Humanos , MicroRNAs/genética , Sistemas de Liberação de Fármacos por Nanopartículas , Sistemas de Liberação de Medicamentos , Infecções Bacterianas/tratamento farmacológico
5.
Colloids Surf B Biointerfaces ; 229: 113444, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453264

RESUMO

Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.


Assuntos
Infecções Bacterianas , Nanopartículas , Animais , Humanos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Bactérias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos
6.
Nat Protoc ; 18(7): 2221-2255, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277562

RESUMO

Programmable cytosine base editors show promising approaches for correcting pathogenic mutations; yet, their off-target effects have been of great concern. Detect-seq (dU-detection enabled by C-to-T transition during sequencing) is an unbiased, sensitive method for the off-target evaluation of programmable cytosine base editors. It profiles the editome by tracing the editing intermediate dU, which is introduced inside living cells and edited by programmable cytosine base editors. The genomic DNA is extracted, preprocessed and labeled by successive chemical and enzymatic reactions, followed by biotin pull-down to enrich the dU-containing loci for sequencing. Here, we describe a detailed protocol for performing the Detect-seq experiment, and a customized, open-source, bioinformatic pipeline for analyzing the characteristic Detect-seq data is also provided. Unlike those previous whole-genome sequencing-based methods, Detect-seq uses an enrichment strategy and hence is endowed with great sensitivity, a higher signal-to-noise ratio and no requirement for high sequencing depth. Furthermore, Detect-seq is widely applicable for both mitotic and postmitotic biological systems. The entire protocol typically takes 5 d from the genomic DNA extraction to sequencing and ~1 week for data analysis.


Assuntos
Biotina , Edição de Genes , Edição de Genes/métodos , Citosina , Genoma , DNA/genética , Sistemas CRISPR-Cas
7.
Materials (Basel) ; 16(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37374628

RESUMO

Microstructure is a significant factor that influences the mechanical properties of alloys. The effect of multiaxial forging (MAF) and subsequent aging treatment on the precipitated phases of Al-Zn-Mg-Cu alloy remains unclear. Therefore, an Al-Zn-Mg-Cu alloy was processed by means of solid solution and aging treatment, and MAF and aging treatment in this work, and the composition and distribution of precipitated phases were characterized in detail. The MAF results for dislocation multiplication and grain refinement were found. The high density of dislocation greatly accelerates the nucleation and growth of precipitated phases. Thus, the GP-zones almost transform into precipitated phases during subsequent aging. The MAF and aging alloy has more precipitated phases than the solid solution and aging treated alloy. The precipitates on the grain boundary are coarse and discontinuously distributed due to dislocation and grain boundary promoting the nucleation, growth and coarsening of the precipitates. The hardness, strength, ductility and microstructures of the alloy have been studied. Without compromising the ductility much, the MAF and aging alloy has higher hardness and strength, with values of 202 HV and 606 MPa, respectively, and an appreciable ductility of 16.2%.

8.
Hum Mol Genet ; 32(16): 2545-2557, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37384418

RESUMO

Protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) is one of the three major sensors in the unfolded protein response (UPR). The UPR is involved in the modulation of protein synthesis as an adaptive response. Prolonged PERK activity correlates with the development of diseases and the attenuation of disease severity. Thus, the current debate focuses on the role of the PERK signaling pathway either in accelerating or preventing diseases such as neurodegenerative diseases, myelin disorders, and tumor growth and cancer. In this review, we examine the current findings on the PERK signaling pathway and whether it is beneficial or detrimental for the above-mentioned disorders.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Estresse do Retículo Endoplasmático/genética , Doenças Neurodegenerativas/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Resposta a Proteínas não Dobradas , Neoplasias/genética
9.
ACS Chem Biol ; 18(2): 205-217, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36731114

RESUMO

Various genome editing tools have been developed for programmable genome manipulation at specified genomic loci. However, it is crucial to comprehensively interrogate the off-target effect induced by these genome editing tools, especially when apply them onto the therapeutic applications. Here, we outlined the off-target effect that has been observed for various genome editing tools. We also reviewed detection methods to determine or evaluate the off-target editing, and we have discussed their advantages and limitations. Additionally, we have summarized current RNA editing tools for RNA therapy and medicine that may serve as alternative approaches for genome editing tools in both research and clinical applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Genoma , Genômica
10.
J Mater Chem B ; 11(4): 716-733, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36594785

RESUMO

As a promising delivery nanosystem for drug controlled-release, nanocarriers (NCs) have been investigated widely. Although various studies have concentrated on the preparation and characterization of nanoparticles (NPs), clinical applications are rarely reported, due to the unclear distribution, absorption, metabolism, toxicology processes and drug release mechanism. The clinical application of NCs is therefore still a long way off. This review describes the effects of the properties of NCs (including size, shape, surface properties, porosity, elasticity and so on) on pharmacological and toxicological behaviours in vivo and medical applications. Moreover, this study is intended to help the readers understand the behaviours and mechanisms of NCs and positively face the challenges caused by the variety of complicated and limited processes of NCs in vivo. Importantly, this article provides some strategies for the clinical application of NCs and may provide ideas to enhance the therapeutic efficacy of NCs without increasing the toxicology, by introducing tracing technology, which can be more suitable in contributing to the development of safety and efficacy of NCs and the growth of nanotechnology.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Nanopartículas/química , Liberação Controlada de Fármacos , Propriedades de Superfície , Nanotecnologia
11.
Biol Trace Elem Res ; 201(8): 4022-4042, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36600166

RESUMO

African ostrich chicks (Struthio camelus) were divided into six groups, and each received different levels of boric acid (source of boron) in the drinking water (0, 40, 80, 160, 320, and 640 mg/L respectively) to examine the histological, apoptotic, biochemical, and transcriptomic parameters. Morphological analysis in different groups was assessed by hematoxylin and eosin (H&E) staining, periodic acid Schiff (PAS) staining, and terminal deoxynucleotide transferase dUTP Nick-End Labeling (TUNEL) assay. The biochemical profile was evaluated spectrophotometrically. Detailed RNA-Seq of the data was performed using the transcriptomic method. H&E staining showed well-developed liver structure up to the 160 mg/L boric acid (BA) supplement groups, while BA doses (320 mg/L and 640 mg/L) caused changes in hepatocytes and portal triads. PAS staining showed that glycogen levels were optimal in the 80 mg/L BA dose group, but a reduction in glycogen levels was observed after this group, particularly in the 640 mg/L BA supplement group. Cellular apoptosis showed a biphasic pattern, and the BA dose above 160 mg/L enhanced cell death. In addition, serum analysis showed that doses of 80-160 mg BA were beneficial for ostrich liver. Then, the transcriptome analysis of the 80 mg dose also showed mainly positive effects on the liver. These results demonstrated that chronic BA exposure (320-640 mg) can cause significant histological, apoptotic, and biochemical changes in African ostrich liver, while the adequate dose of supplementation (particularly 80 mg BA) promotes liver growth.


Assuntos
Struthioniformes , Animais , Boro/farmacologia , Transcriptoma , Perfilação da Expressão Gênica , Galinhas , Apoptose , Fígado
12.
Nat Biotechnol ; 41(5): 663-672, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36357717

RESUMO

Cytosine base editors (CBEs) efficiently generate precise C·G-to-T·A base conversions, but the activation-induced cytidine deaminase/apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family deaminase component induces considerable off-target effects and indels. To explore unnatural cytosine deaminases, we repurpose the adenine deaminase TadA-8e for cytosine conversion. The introduction of an N46L variant in TadA-8e eliminates its adenine deaminase activity and results in a TadA-8e-derived C-to-G base editor (Td-CGBE) capable of highly efficient and precise C·G-to-G·C editing. Through fusion with uracil glycosylase inhibitors and further introduction of additional variants, a series of Td-CBEs was obtained either with a high activity similar to that of BE4max or with higher precision compared to other reported accurate CBEs. Td-CGBE/Td-CBEs show very low indel effects and a background level of Cas9-dependent or Cas9-independent DNA/RNA off-target editing. Moreover, Td-CGBE/Td-CBEs are more efficient in generating accurate edits in homopolymeric cytosine sites in cells or mouse embryos, suggesting their accuracy and safety for gene therapy and other applications.


Assuntos
Citosina , Edição de Genes , Camundongos , Animais , Edição de Genes/métodos , Citosina/metabolismo , Aminoidrolases/metabolismo , RNA , Sistemas CRISPR-Cas/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo
13.
Cell Biol Toxicol ; 39(1): 53-83, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36125599

RESUMO

MicroRNAs (miRNAs) are non-coding RNAs which are essential post-transcriptional gene regulators in various neuronal degenerative diseases and playact a key role in these physiological progresses. Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and, stroke, are seriously threats to the life and health of all human health and life kind. Recently, various studies have reported that some various miRNAs can regulate the development of neurodegenerative diseases as well as act as biomarkers to predict these neuronal diseases conditions. Endogenic miRNAs such as miR-9, the miR-29 family, miR-15, and the miR-34 family are generally dysregulated in animal and cell models. They are involved in regulating the physiological and biochemical processes in the nervous system by targeting regulating different molecular targets and influencing a variety of pathways. Additionally, exogenous miRNAs derived from homologous plants and defined as botanmin, such as miR2911 and miR168, can be taken up and transferred by other species to be and then act analogously to endogenic miRNAs to regulate the physiological and biochemical processes. This review summarizes the mechanism and principle of miRNAs in the treatment of some neurodegenerative diseases, as well as discusses several types of miRNAs which were the most commonly reported in diseases. These miRNAs could serve as a study provided some potential biomarkers in neurodegenerative diseases might be an ideal and/or therapeutic targets for neurodegenerative diseases. Finally, the role accounted of the prospective exogenous miRNAs involved in mammalian diseases is described. 1. Listing a large number of neural-related miRNAs and sorting out their pathways. 2. Classify and sort miRNAs according to their mechanism of action. 3. Demonstrating the effects of up-regulation or down-regulation of each miRNAs on the nervous system.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Estudos Prospectivos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/genética , Biomarcadores , Mamíferos/genética , Mamíferos/metabolismo
14.
J Control Release ; 350: 829-840, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36100192

RESUMO

Hypoxia at the solid tumor site is generally related to the unrestricted proliferation and metabolism of cancerous cells, which can cause tumor metastasis and aggravate tumor progression. Besides, hypoxia plays a substantial role in tumor treatment, and it is one of the main reasons that malignant tumors are difficult to cure and have a poor prognosis. On account of the tumor specific hypoxic environment, many hypoxia-associative nanomedicine have been proposed for tumor treatment. Considering the enhanced targeting effect, designing hypoxia-associative nanomedicine can not only minimize the adverse effects of drugs on normal tissues, but also achieve targeted therapy at the lesion site. Mostly, there can be three strategies for the treatment of hypoxic tumor, including improvement of hypoxic environment, hypoxia responsive drug release and hypoxia activated prodrug. The review describes the design principle and applications of tumor hypoxia-associative nanomedicine in recent years, and also explores its development trends in solid tumor treatment. Moreover, this review presents the current limitations of tumor hypoxia-associative nanomedicine in chemotherapy, radiotherapy, photodynamic therapy, sonodynamic therapy and immunotherapy, which may provide a reference for clinic translation of tumor hypoxia-associative nanomedicine.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Hipóxia , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/farmacologia , Hipóxia Tumoral
15.
Colloids Surf B Biointerfaces ; 217: 112655, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785715

RESUMO

Treatment of late-stage lung cancer has witnessed limited advances. In contrast to the tremendous efforts toward improving adaptive immunity, approaches to modulating innate immunity are relatively immature. As important innate immune cells, tumor-associated macrophages (TAMs) account for a substantial fraction of tumor-infiltrating lymphocytes, which not only reverses the immune-suppressive tumor microenvironment but also facilitates an adaptive immune response. In this study, we developed a tumor-specific MMP-2-responsive CD47 blockage (TMCB) strategy to enable effective cancer immunotherapy. Briefly, the matrix metalloproteinase-2 (MMP-2)-responsive self-assembly peptide specifically recognizes CD47, which is highly expressed in lung tumor cells. Second, the MMP-2-responsive self-assembly peptide is efficiently cleaved by MMP-2, which is overexpressed in the tumor microenvironment. Finally, the generated residual peptide naturally self-assembles into peptide-based nanofibers. The in situ constructed nanofibers inhibit the canonical CD47 "Do not eat me" signal expressed on tumor cells to promote phagocytosis of tumor cells by macrophages, which further induces effective antigen presentation and initiates T cell-mediated adaptive immune responses to inhibit tumor growth. Thus, we described a peptide-based TMCB strategy that induces both innate and adaptive immune systems to inhibit tumor growth.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Imunoterapia , Metaloproteinase 2 da Matriz , Neoplasias/patologia , Neoplasias/terapia , Peptídeos , Fagocitose , Microambiente Tumoral
16.
17.
Nature ; 606(7915): 804-811, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35551512

RESUMO

DddA-derived cytosine base editors (DdCBEs)-which are fusions of split DddA halves and transcription activator-like effector (TALE) array proteins from bacteria-enable targeted C•G-to-T•A conversions in mitochondrial DNA1. However, their genome-wide specificity is poorly understood. Here we show that the mitochondrial base editor induces extensive off-target editing in the nuclear genome. Genome-wide, unbiased analysis of its editome reveals hundreds of off-target sites that are TALE array sequence (TAS)-dependent or TAS-independent. TAS-dependent off-target sites in the nuclear DNA are often specified by only one of the two TALE repeats, challenging the principle that DdCBEs are guided by paired TALE proteins positioned in close proximity. TAS-independent off-target sites on nuclear DNA are frequently shared among DdCBEs with distinct TALE arrays. Notably, they co-localize strongly with binding sites for the transcription factor CTCF and are enriched in topologically associating domain boundaries. We engineered DdCBE to alleviate such off-target effects. Collectively, our results have implications for the use of DdCBEs in basic research and therapeutic applications, and suggest the need to thoroughly define and evaluate the off-target effects of base-editing tools.


Assuntos
Núcleo Celular , Citosina , Edição de Genes , Mitocôndrias , Mutação , Núcleo Celular/genética , Citosina/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo
18.
RSC Adv ; 12(16): 9524-9533, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424939

RESUMO

The incidence of articular cartilage defects is increasing year by year. In order to repair the cartilage tissue at the defect, scaffolds with nanofiber structure and biocompatibility have become a research hotspot. In this study, we designed and fabricated a bi-layer scaffold prepared from an upper layer of drug-dispersed gelatin methacrylate (GELMA) hydrogel and a lower layer of a drug-encapsulated coaxial fiber scaffold prepared from silk fiber (SF) and polylactic acid (PLA). These bi-layer scaffolds have porosity (91.26 ± 3.94%) sufficient to support material exchange and pore size suitable for cell culture and infiltration, as well as mechanical properties (2.65 ± 0.31 MPa) that meet the requirements of cartilage tissue engineering. The coaxial fiber structure exhibited excellent drug release properties, maintaining drug release for 14 days in PBS. In vitro experiments indicated that the scaffolds were not toxic to cells and were amenable to chondrocyte migration. Notably, the growth of cells in a bi-layer scaffold presented two states. In the hydrogel layer, cells grow through interconnected pores and take on a connective tissue-like shape. In the coaxial fiber layer, cells grow on the surface of the coaxial fiber mats and appeared tablet-like. This is similar to the structure of the functional partitions of natural cartilage tissue. Together, the bi-layer scaffold can play a positive role in cartilage regeneration, which could be a potential therapeutic choice to solve the current problems of clinical cartilage repair.

19.
Methods Mol Biol ; 2378: 233-245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985704

RESUMO

In response to endoplasmic reticulum (ER) stress, activation of pancreatic ER kinase (PERK) signaling adapts cells to stressful conditions by phosphorylating eukaryotic translation initiation factor 2α (eIF2α). Phosphorylation of eIF2α inhibits global protein translation but stimulates the expression of numerous stress-responsive genes by inducing the transcription factor ATF4. A large number of studies have shown that activation of PERK signaling has beneficial or detrimental effects in various diseases of the central nervous system (CNS), including neurodegenerative diseases, myelin disorders, CNS injuries, among others. This chapter is devoted to describing the practical methods for the detection of PERK signaling in CNS diseases.


Assuntos
Fator 4 Ativador da Transcrição , eIF-2 Quinase , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Apoptose , Sistema Nervoso Central/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
20.
J Ethnopharmacol ; 284: 114799, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34748869

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Natural musk (Moschus), derived naturally from male musk deer (Moschus berezovskii Flerov, Moschus sifanicus Przewalski, or Moschus moschiferus Linnaeus), has long been an important component of traditional Chinese medicine (TCM), and was used as resuscitation, blood circulation, and collateral drainage. detumescence and pain relief. Artificial musk was researched and applied into TCM as natural musk being as unsustainable resources. AIM OF THE STUDY: We mainly summarized chemical compositions, pharmacological activities and mechanism of action of natural and artificial musk, and designed to serve as a foundation for further research into musk chemical compositions and pharmacological effect. MATERIALS AND METHODS: Those mainstream scientific databases including Google Scholar, ScienceDirect, SpringerLink, CNKI, Wiley Online Library, web of science, were used for searching with below "Keywords", as well as literature-tracking. Literatures spanned 1962 to 2021, and involved into Chinese, English, Janpanese, Korean. RESULTS: Natural musk contains some very desirable but scarce compounds, as well as their biological features, which led to the development of artificial musk. The chemical ingredients, pharmacological activities, and mechanisms of action of natural and artificial musk are summarized and compared in this paper. Polypeptide and protein, muscone, musclide, steroids, muscopyridine, and other chemical constituents of musk demonstrated important therapeutic properties against inflammation, immune system disorders, neurological disorders, cardiovascular system disorders, and so on. The mechanism of action contributed to effect on mediators, acceptors and relative signal pathways. CONCLUSIONS: Natural and artificial musk were revealed having some activated compounds, and showed excellent pharmacological effect. Meantime, above two sides of natural and artificial musk ought to get further research.


Assuntos
Ácidos Graxos Monoinsaturados/química , Animais , Cervos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA